Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.
نویسندگان
چکیده
In seasonal climates, dormancy is a common strategy that structures biodiversity and is necessary for the persistence of many species. Climate change will likely alter dormancy dynamics in zooplankton, the basis of aquatic food webs, by altering two important hatching cues: mean temperatures during the ice-free season, and mean day length when lakes become ice free. Theory suggests that these changes could alter diversity, hatchling abundances and phenology within lakes, and that these responses may diverge across latitudes due to differences in optimal hatching cues and strategies. To examine the role of temperature and day length on hatching dynamics, we collected sediment from 25 lakes across a 1800 km latitudinal gradient and exposed sediment samples to a factorial combination of two photoperiods (12 and 16 h) and two temperatures (8 and 12 °C) representative of historical southern (short photoperiod, warm) and northern (long photoperiod, cool) lake conditions. We tested whether sensitivity to these hatching cues varies by latitudinal origin and differs among taxa. Higher temperatures advanced phenology for all taxa, and these advances were greatest for cladocerans followed by copepods and rotifers. Although phenology differed among taxa, the effect of temperature did not vary with latitude. The latitudinal origin of the egg bank influenced egg abundance and hatchling abundance and diversity, with these latter effects varying with taxa, temperature and photoperiod. Copepod hatchling abundances peaked at mid-latitudes in the high temperature and long photoperiod treatments, whereas hatchling abundances of other zooplankton were greatest at low latitudes and high temperature. The overall diversity of crustacean zooplankton (copepods and cladocerans) also reflected distinct responses of each taxa to our treatments, with the greatest diversity occurring at mid-latitudes (~56 °N) in the shorter photoperiod treatment. Our results demonstrate that hatching cues differ for broad taxonomic groups that vary in developmental and life-history strategies. These differences are predicted to drive latitude-specific shifts in zooplankton emergence with climate change and could alter the base of aquatic food webs.
منابع مشابه
The link between environmental variation and evolutionary shifts in dormancy in zooplankton.
Sex and dormancy are intertwined in organisms that engage in asexual and sexual reproduction. The transition between asexual and sexual reproduction typically results in a dormant stage that provides a mechanism for persisting under harsh environmental conditions. For example, many zooplankton engage in sexual reproduction when environmental conditions deteriorate and produce resting eggs that ...
متن کاملClimate shifts the interaction web of a marine plankton community
Climatic effects in the ocean at the community level are poorly described, yet accurate predictions about ecosystem responses to changing environmental conditions rely on understanding biotic responses in a food-web context to support knowledge about direct biotic responses to the physical environment. Here we conduct time-series analyses with multivariate autoregressive (MAR) models of marine ...
متن کاملMixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.
It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic po...
متن کاملHumidity-regulated dormancy onset in the Fabaceae: a conceptual model and its ecological implications for the Australian wattle Acacia saligna.
BACKGROUND AND AIMS Seed dormancy enhances fitness by preventing seeds from germinating when the probability of seedling survival and recruitment is low. The onset of physical dormancy is sensitive to humidity during ripening; however, the implications of this mechanism for seed bank dynamics have not been quantified. This study proposes a model that describes how humidity-regulated dormancy on...
متن کاملToward quantifying the response of the oceans' biological pump to climate change
The biological pump makes a major global contribution to the sequestration of carbon-rich particles in the oceans’ interior. This pump has many component parts from physics to ecology that together control its efficiency in exporting particles. Hence, the influence of climate change on the functioning and magnitude of the pump is likely to be complex and non-linear. Here, I employ a published 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of animal ecology
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2016